

BAC06S

SOLAR BATTERY CHARGER

USER MANUAL

SMARTGEN (ZHENGZHOU) TECHNOLOGY CO., LTD.

SmartGen — make your generator Smart

SmartGen Technology Co., Ltd No. 28 Jinsuo Road Zhengzhou City P. R. China Tel: 0086-371-67988888 0086-371-67981888 0086-371-67991553 0086-371-67992951 0086-371-67992951 0086-371-67992952 Web: www.smartgen.com.cn www.smartgen.cn Email: sales@smartgen.cn

All rights reserved. No part of this publication may be reproduced in any material form (including photocopying or storing in any medium by electronic means or other) without the written permission of the copyright holder.

Rel

SmartGen Technology reserves the right to change the contents of this document without prior notice.

Software Version

Date	Version	Content
2017-07-20	1.0	Original release.

CONTENT

1.	OVERVIEW4
2.	PERFORMANCE AND CHARACTERISTICS4
3.	SPECIFICATION
4.	CHARGING PRINCIPLE
5.	PARAMETER CONFIGURATION8
6.	COMMUNICATION PROTOCOL12
7.	TERMINAL DEFINITION
8.	APPLICATION
9.	SOLAR PENAL SELECTION
10.	CASE DIMENSIONS
11.	TROUBLE SHOOTING

1. OVERVIEW

BAC06S solar battery charger adopts the latest switch power components and uses MPPT algorithm with perturbation incremental method, which is specially designed for charging lead-acid starting battery according to its property. It is suitable for lead-acid battery (12V/24V) long-term float charge by the sunlight.

2. PERFORMANCE AND CHARACTERISTICS

- a) Suitable for 12V/24V battery charging use, users can adjust output voltage and current as required;
- b) Using step-down BACK switch power supply structure, small size, light weight and high efficiency;
- c) Innovative Maximum Power Point Tracking (MPPT) technology with high tracking efficiency, and effectively improve the amount of solar power generation.
- d) Excellent heat dissipation performance, natural convection air, high reliability and without noise;
- e) With optional battery charging mode and CVCC mode (Power Mode);
- f) 2-stage or 3-stage charging method can be choose as require, and both methods are designed for charging lead-acid battery according to its property to prevent battery overcharge and maximize the battery life;
- g) With short circuit and reverse connection protection;
- h) Load output port with over/under voltage and over current protections, if solar voltage is too low (night), load starts output;
- i) With charge fail or battery low voltage output port;
- j) RS485 communication port adopts MODBUS protocol. User can set parameters and remote monitor charging status via communication interface.

3. SPECIFICATION

Category	Items	Parameter		
System	Voltage	12V	24V	
	Max. Input Voltage	DC48V		
last	Max. Input Power	160W	320W	
Input	Efficiency	≪96%	≪97%	
	MPPT Efficiency	>99%		
Output	Max. Output Voltage	16V	32V	
	Factory Default Float Voltage	13.8V	27.6V	
	Rated Charging Current	10A		
	Max. Load Current	10A		
	Working Temp.	(-30~+55)°C		
Working	Storage Temp.	(-40~+85)°C		
Condition	Working Humidity	20%RH~93%RH (no condensation)		
Overall	Weight	0.57kg		
Structure	Dimension	143mm× <mark>96mm</mark> ×55mm (L×W×H)		

4. CHARGING PRINCIPLE

Charging is performed according to the battery charging characteristics using three-stage method.

- a) The first stage is named as 'constant current': a): Trickle Charge: when the battery terminal voltage is relatively low, then the charging current is low likewise which can prevent the battery temperature is too high.
 b): Quick Charge: When the battery terminal voltage is relatively high, the charging current will rise to rated value. Large current charging operation leads to an increase in the electricity quantity of the battery.
- b) The second stage is named as Absorption Charge: after the first stage, the battery voltage is rise to absorption charge value rapidly, and the charger voltage will keep constant. The battery terminal voltage will stabilize in the absorption charge value with the decreasing of charging current.
- c) The third stage is named as Float Charge: After the above two stage, the charge is basically completed and the Float Charge is started automatically. In this stage, the charger voltage reduces to float voltage and the charger current reduces to float value. After that charging current will only neutralize the battery self-discharge. Even long-term charging cannot harm the battery, as charger can keep the battery fully charged and so guarantee long lifetime of the battery.

Two-stage Method

Charging is performed according to the battery charging characteristics using two-stage method.

- a) The first stage is named as 'constant current': a): Trickle Charge: when the battery terminal voltage is relatively low, then the charging current is low likewise which can prevent the battery temperature is too high. b): Quick Charge: When the battery terminal voltage is relatively high, the charging current will rise to rated value. Large current charging operation leads to an increase in the electricity quantity of the battery.
- b) The second stage is named as Float Charge: The charging current will decrease with the rising of battery electricity. As soon as charging current value falls below 0.3A, the battery is basically fully charged. After that charging current will only neutralize the battery self-discharge. Even long-term charging cannot harm the battery, as charger can keep the battery fully charged and so guarantee long lifetime of the battery.

5. PARAMETER CONFIGURATION

Basic Parameter Settings,

No		Default		Adjustable Range		Description
INU.	liems	24V	12V	24V	12V	Description
1	Battery Type	2	2	(0~	-2)	0:12V ; 1:24V ; 2:Self-adaption
2	Charging Stage	2	2	(2~	-3)	2: Two Stage; 3: Three Stage
3	Max. Rated Current	10.	0A	Nonadji	ustable	Maximum charging current
4	Rated Current	10	0%	(0~10	00)%	Maximum charging current percentage
5	Absorption Charge Voltage	28.2V	14.1V	(20.0~32.0)V	(10.0~16.0)V	The charging voltage of "Constant Voltage"
6	Absorption Charge Time	,		(0~	.1)	0: Disable; 1: Enable
7	Absorption Charge Time Setting	1.0	Dh	(0.1~*	100)h	The charging time of "Constant Voltage"
8	Absorption Charge Complete Current	1		(0~1)		0: Disable; 1: Enable
9	Complete Current Setting	0.5A		(0.20~3.00)A		The transition current from "Absorption Charge" transfer to "Float Charge".
10	Float Charge Voltage	27.6V	13.8V	(20.0~32.0)V	(10.0~16.0)V	The voltage of "Float Charge"
11	AUTO BOOST Voltage	25.6V	12.8V	(20.0~32.0)V	(10.0~16.0)V	When the charger is in "Float Mode", it enters into "Quick Charge" if the battery voltage has fallen below the set value.
12	Trickle Charge	,	l	(0~1)		0: Disable; 1: Enable
13	Trickle Charge Voltage	22.0V	11.0V	(20.0~32.0)V	(10.0~16.0)V	The voltage of "Trickle Charge"
14	Trickle Charge Current	50%		(0~100)%		Maximum charging current percentage
15	Battery Under Voltage Warn	,		(0~1)		0: Disable; 1: Enable
16	Under Voltage Set Value	23.0V	11.5V	(16.0~32.0)V	(8.0~16.0)V	"Under voltage" alarm will be initiated if the

2017-07-20

No	No. Items		ault	Adjustable Range		Description
INO.			12V	24V	12V	Description
						battery voltage falls below the set value.
17	Under Voltage Delay	120s		(0~3600)s		"Under voltage" alarm will be initiated if the battery voltage falls below the set value and the delay timer has expired.
18	Under Voltage Return Value	25.0V	12.5V	(16.0~32.0)V	(8.0~16.0)V	The transition voltage from "under voltage" transfer to "normal voltage".
19	Under Voltage Return Delay	10s		(0~3600)s		"Under voltage" alarm will be removed if the battery voltage exceeds the return value and the delay timer has expired.
20	Communication Address	10		1~254		RS485 communication address
21	Baud Rate	0		(0~2	?)	0: 9600bps; 1: 19200bps; 2: 38400bps; one stop-bit, no parity bit
L	5					1

Load Parameter Settings

No.	Items	Default	Adjustable Range	Description
1	Load Output Enabled	1	(0-1)	0: Disable; 1: Enable Control effectiveness of load output, if select "0", load output port is disabled.
2	Under Volt Off Load Enabled	1	(0-1)	0: Disable; 1: Enable Setting whether or not to disconnect output if load under voltage.
3	Undervolt Off Load Voltage Value	10.0V	(0-42.0)V	The minimum voltage when load disconnect.
4	Undervolt Off Load Return Value	11.0V	(0-42.0)V	The voltage value when output restored after load under volt disconnected.
5	Undervolt Off Load Delay Value	2.0s	(0-60.0)s	It is delay time that after load voltage falling below the setting off load value, and load disconnect after delay is expired.
6	Overvolt Off Load Enabled	1	(0-1)	0: Disable; 1: Enable Setting whether or not to disconnect output if load over voltage.
7	Overvolt Off Load Voltage Value	29.0V	(0-42.0)V	The maximum voltage when load disconnect.
8	Overvolt Off Load Return Value	28.0V	(0-42.0)V	The voltage value when output restored after load over volt disconnected.
9	Overvolt Off Load Delay	2.0s	(0-60.0)s	It is delay time that after load voltage exceeding the setting off load value, and load disconnect after delay is expired.
10	Load Overcurrent Warning Enabled	1	(0-1)	0: Disable; 1: Enable Setting whether or not to initiate warning alarm if load over current.
11	Load Overcurrent Warning Current Value	90%	(0-200)%	Load overcurrent warning value.
12	Load Overcurrent Warning Return Value	85%	(0-200)%	After load overcurrent warning, if load current falls below the setting point, warning alarm will be cleared.
13	Load Overcurrent Warning Delay Value	10s	(0-3600)s	It is delay time that after load current exceeding the setting overcurrent value, and overcurrent warning alarm will be initiated after delay is expired.
14	Overcurrent Off Load Current Value	100%	(0-200)%	It is the current value when overcurrent load disconnect.
15	Overcurrent Off Load Delay Value	1.0s	(0-60.0)s	It is delay time that after load current exceeding the setting value, and load

No.	Items	Default	Adjustable Range	Description
				disconnect after delay is expired.
16	Overcurrent Off Load Action	1	(0-1)	0: Always DisconnectRepower-up to restore.1: Restore after delayLoad connected again after the setting delay.
17	Overcurrent Off Load Restore Delay	10s	(0-3600)s	Reconnecting load after preset delay.
18	Working Mode	0	(0-1)	0:Battery Charging Mode 1:CVCC Mode CVCC mode is inhibiting to choose when battery is connected to the battery output port.
19	Volt Value in CVCC Mode	12.0V	(5.0-42.0)V	Constant voltage value in CVCC mode.
20	Current Value in CVCC Mode	100%	(0-100)%	Constant current value in CVCC mode.
21	Min. Working Volt Off-load	16.0V	(10.0-45.0)V	Charger starts work when input voltage exceeds the setting value.
22	Enable Load Output When Low Volt Input	1	(0-1)	0: Disable; 1: Enable If enable this function, load outputs when solar voltage below the level. It is used for night lighting.
23	Voltage Input When Load Output	5.0V	(0.0-45.0)V	Load starts output when input voltage falls below the setting point.
24	Load Output Delay(Low Volt Input)	10min	(1-600)min	Load starts output when input voltage falls below the setting point after delay is expired.
25	Volt Input When Load Disconnect	6.0V	(0.0-45.0)V	Load output disconnect when input voltage exceeds the setting point.
26	Load Disconnect Delay(Low Voltage Input)	10min	(1-600)min	Load disconnect when input voltage exceeds the setting point after delay is expired.

6. COMMUNICATION PROTOCOL

BAC06S solar battery charger equips with RS485 port, its parameters can be configured via PC software, and group-net communication also can be realized to achieve status information of solar battery charger. Communication protocol is MODBUS RTU with default baud rate 9600bps, no parity, 1 stop-bit, and default communication address is 10 (baud rate and communication address can be modified via PC software).

Communication protocol is as follows,

Address	Item	Function Code	Description	Remark
1000	Reserved	03H		
1001	Output Current	03H	Signed(*100)	
1002	Output Voltage	03H	Signed (*100)	
1003	Reserved	03H		
1004	Reserved	03H		
1005	Reserved	03H		
1006	Charging Status	03H	0:Standby;	
			1:Trickle Charge;	
			2:Quick Charge;	
			3:Absorption Charge;	
			4:Float Charge	
1007	Reserved	03H		
1008	Reserved	03H		
1009	Reserved	03H		
1010	Reserved	03H		
1011	Reserved	03H		
1012	Reserved	03H		
1013	Reserved	03H		
1014	Reserved	03H		
1015	Battery Type	03H	0:12V	
			1:24V	
1016	Reserved	03H		
1017	Reserved	03H		
1018	Reserved	03H		
1019	Reserved	03H		
1020	Common Alarm	03H	0: Disable; 1: Enable	(LSB)
	Reserved		0: Disable; 1: Enable	
	Reserved		0: Disable; 1: Enable	
	Reserved		0: Disable; 1: Enable	
	Reserved		0: Disable; 1: Enable	
	Fail to Charge		0: Disable; 1: Enable	
	Reserved		0: Disable; 1: Enable	
	Battery Under Volt		0: Disable; 1: Enable	
	Warning			

Address	Item	Function Code	Description	Remark
	Reserved		0: Disable; 1: Enable	
	Reserved		0: Disable; 1: Enable	
	Reserved		0: Disable; 1: Enable	
	Reserved		0: Disable; 1: Enable	
	Reserved		0: Disable; 1: Enable	
	Reserved		0: Disable; 1: Enable	
	Reserved		0: Disable; 1: Enable	
	Reserved		0: Disable; 1: Enable	(MSB)
1021	Input Voltage (no solar	03H	0: Disable; 1: Enable	(LSB)
	energy)			
	Output (no battery)		0: Disable; 1: Enable	
	Solar Under Voltage		0: Disable; 1: Enable	
	Solar Over Voltage		0: Disable; 1: Enable	
	Load Undervolt		0: Disable; 1: Enable	
	Disconnect			
	Load Overcurrent		0: Disable; 1: Enable	
	Disconnect			
	Load Output Connect		0: Disable; 1: Enable	
	Load Overcurrent		0: Disable; 1: Enable	
	Warning			
	Load Overvolt		0: Disable; 1: Enable	
	Disconnect			
	Input Low Volt Load		0: Disable; 1: Enable	
	Connect			
	Reserved		0: Disable; 1: Enable	
	Reserved		0: Disable; 1: Enable	
	Reserved		0: Disable; 1: Enable	
	Reserved	-	0: Disable; 1: Enable	
	Reserved	-	0: Disable; 1: Enable	
	Reserved		0: Disable; 1: Enable	(MSB)
1022	Reserved			
1023	Reserved			
1024	Reserved			
1025	Reserved			
1026	Reserved			
1027	Reserved			
1028	Reserved			
1029	Reserved			
1030	No-load Solar Voltage	03H	Signed(*100)	
1031	Solar Voltage	03H	Signed (*100)	
1032	Solar Current	03H	Signed(*100)	
1033	Load Current	03H	Signed (*100)	
1034	Output Target Voltage	03H	Signed(*100)	

Address	Item	Function Code	Description	Remark
1035	Output Target Current	03H	Signed (*100)	
1036	Solar Power	03H	Signed(*10)	Unit: W
1037	Output Power	03H	Signed (*10)	Unit: W
1038	Load Power	03H	Signed (*10)	Unit: W
1039	Solar Accumulate	03H/06H	Unsigned (*1000)	Unit: kWh
1040	Energy			
1041	Output Accumulate	03H/06H	Unsigned (*1000)	Unit: kWh
1042	Energy			
1043	Load Accumulate	03H/06H	Unsigned (*1000)	Unit: kWh
1044	Energy			

7. TERMINAL DEFINITION

BAC06S Mask

Terminal	Function	Description
P+	Solar Power +	Connect to solar cell panel output
P-	Solar Power-	
B+	Battery +	Connect with the battery to be charged
B-	Battery -	
L+	Load +	Supply power to load
L-	Load -	
A	RS485 +	RS485 communication port
В	RS485 -	
OUT	Output Port	Normally closed, internal normally closed port connect with B-;
		It is output when charger cannot charge the battery after 60s
		delay expired (charge failure output); if battery under volt warning
		enabled, it is output only when detect battery under volt warning
		alarms.
	Solar Indicator	Indicator lights up if solar cell panel correctly connect and solar
\otimes		voltage exceeds 6V. If load over current, battery indicator and
		solar indicator flash per 0.5s.
<u></u>	Battery Indicator	Indicator lights up if battery correctly connect to the battery and
\otimes		battery voltage exceeds 3V;
		If fail to charge, battery indicator flashes per 0.5s;
		If load over current, battery indicator and solar indicator flash per
		0.5s.

A NOTE 1: During gen-set is running, high charging current will cause voltage drop in charging line, so recommend separately connecting to battery terminal to avoid disturbance on sampling precision.

▲ NOTE 2: Power connection order: connecting battery firstly and then solar panel; Power disconnection order: disconnecting solar panel firstly, and then battery. Please follow the correct sequence to connect/disconnect power and inhibit to operate energized connection cable in case of damaging the battery.

8. APPLICATION

APPLICATION INSTRUCTION:

Load

Solar Choose 18V or 36V solar panel, please reference solar type as below.

Battery Choose 12V or 24V battery (24V battery cannot be charged while using 18V solar panel).

Used for controlling lighting lamps to provide lighting in the dark, and also available for other functional load.

Display Connecting monitoring device to portA and portB of RS485 to display the charging status data.

Mains Charger Mains charger can be backup power supply for the battery, if battery volt is too low caused by the solar cells fault, heavy load, and long-term un-sufficient energy. It is avoiding the battery to over discharge. Internal of output port is normally closed point of relay, and another end of normally closed point is connecting with B-, which connect when low battery volt occurs.

9. SOLAR PENAL SELECTION

Solar panel type selection needs to base on conditions of the load power, battery voltage and capacity, and battery power consumption.

a) Solar Panel Voltage Confirmation

Firstly, according to the battery voltage to choose solar panel voltage (for 12V rechargeable battery, conventional 18V or 36V, and unconventional 16V~48V solar panels can be choose; for 24V battery, conventional 36V, and unconventional 32V~48V solar panels can be choose). No-load output voltage of solar panel cannot exceed 48V.

b) Solar panel Power Confirmation

- Solar panel power > Daily power consumption (WH)/ Solar effective illumination time per day (H)/Actual utilization of solar panel power(%);
- Daily power consumption (WH)= Load power (W)* Working time (T) + Battery daily average power consumption (WH);
- Solar effective illumination time per day (usually 8 hours), if more rainy days, illumination time can be appropriately shorter.
- Actual utilization of solar panel power, which is the ratio of average daily output power of solar energy to solar penal nominal power, is commonly can be 50%. It is related to the local light intensity and installation angle, and the best mounting angle for sola panel is perpendicular to the sun. However, along with the sunlight move, light angle also changes, users can choose the best installation angle with the help of searching the internet (commonly according to the local latitude and longitude to select and optimal fixed angle).

c) Charging Current Confirmation

Battery charging current is always below 10% of battery capacity. Like for 100Ah battery, charging current can be set as 10A.

2017-07-20

10. CASE DIMENSIONS

Unit: mm

11. TROUBLE SHOOTING

Troubles	Solutions			
Solar indicator does not	Check solar panel wiring connection;			
light	Solar Panel failure;			
Battery indicator does not	Check battery connection;			
light	Battery failure or battery deficit;			
	Check solar panel wiring connection;			
Battery indicator flashes	Solar Panel failure;			
	Solar panel output voltage falls below battery voltage;			
Both solar indicator and	load over ourrent ramp off the load:			
battery indicator flash	load over current, ramp-oir the load,			
	Check RS485 wiring connection;			
Communication Failure	Check whether the communication address and baud rate settings are			
	consistent.			